Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
2.
Artigo em Inglês | MEDLINE | ID: mdl-38450801

RESUMO

BACKGROUND: The limited therapies available for treating Merkel cell carcinoma (MCC), a highly aggressive skin neoplasm, still pose clinical challenges, and novel treatments are required. Targeting retinoid signalling with retinoids, such as all-trans retinoic acid (ATRA), is a promising and clinically useful antitumor approach. ATRA drives tumour cell differentiation by modulating retinoid signalling, leading to anti-proliferative and pro-apoptotic effects. Although retinoid signalling is dysregulated in MCC, ATRA activity in this tumour is unknown. This study aimed to evaluate the impact of ATRA on the pathological phenotype of MCC cells. METHODS: The effect of ATRA was tested in various Merkel cell polyomavirus-positive and polyomavirus-negative MCC cell lines in terms of cell proliferation, viability, migration and clonogenic abilities. In addition, cell cycle, apoptosis/cell death and the retinoid gene signature were evaluated upon ATRA treatments. RESULTS: ATRA efficiently impaired MCC cell proliferation and viability in MCC cells. A strong effect in reducing cell migration and clonogenicity was determined in ATRA-treated cells. Moreover, ATRA resulted as strongly effective in arresting cell cycle and inducing apoptosis/cell death in all tested MCC cells. Enrichment analyses indicated that ATRA was effective in modulating the retinoid gene signature in MCC cells to promote cell differentiation pathways, which led to anti-proliferative and pro-apoptotic/cell death effects. CONCLUSIONS: These results underline the potential of retinoid-based therapy for MCC management and might open the way to novel experimental approaches with other retinoids and/or combinatorial treatments.

3.
Theranostics ; 14(1): 143-158, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164139

RESUMO

Human osteogenic differentiation is a complex and well-orchestrated process which involves a plethora of molecular players and cellular processes. A growing number of studies have underlined that circular RNAs (circRNAs) play an important regulatory role during human osteogenic differentiation. CircRNAs are single-stranded, covalently closed non-coding RNA molecules that are acquiring increased attention as epigenetic regulators of gene expression. Given their intrinsic high conformational stability, abundance, and specificity, circRNAs can undertake various biological activities in order to regulate multiple cellular processes, including osteogenic differentiation. The most recent evidence indicates that circRNAs control human osteogenesis by preventing the inhibitory activity of miRNAs on their downstream target genes, using a competitive endogenous RNA mechanism. The aim of this review is to draw attention to the currently known regulatory mechanisms of circRNAs during human osteogenic differentiation. Specifically, we provide an understanding of recent advances in research conducted on various human mesenchymal stem cell types that underlined the importance of circRNAs in regulating osteogenesis. A comprehensive understanding of the underlying regulatory mechanisms of circRNA in osteogenesis will improve knowledge on the molecular processes of bone growth, resulting in the potential development of novel preclinical and clinical studies and the discovery of novel diagnostic and therapeutic tools for bone disorders.


Assuntos
Células-Tronco Mesenquimais , MicroRNAs , Humanos , RNA Circular/genética , RNA Circular/metabolismo , Osteogênese/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Diferenciação Celular/genética , Células-Tronco Mesenquimais/metabolismo
4.
Int J Cancer ; 154(6): 1029-1042, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37947765

RESUMO

Non-small cell lung cancer (NSCLC) patients are often elderly or unfit and thus cannot tolerate standard aggressive therapy regimes. In our study, we test the efficacy of the DNA-hypomethylating agent decitabine (DAC) in combination with all-trans retinoic acid (ATRA), which has been shown to possess little systemic adverse effects. Screening a broad panel of 56 NSCLC cell lines uncovered a decrease in cell viability after the combination treatment in 77% of the cell lines. Transcriptomics, proteomics, proliferation and migration profiling revealed that fast proliferating and slowly migrating cell lines were more sensitive to the drug combination. The comparison of mutational profiles found oncogenic KRAS mutations only in sensitive cells. Additionally, different cell lines showed a heterogeneous gene expression response to the treatment pointing to diverse mechanisms of action. Silencing KRAS, RIG-I or RARB partially reversed the sensitivity of KRAS-mutant NCI-H460 cells. To study resistance, we generated two NCI-H460 cell populations resistant to ATRA and DAC, which migrated faster and proliferated slower than the parental sensitive cells and showed signs of senescence. In summary, this comprehensive dataset uncovers a broad sensitivity of NSCLC cells to the combinatorial treatment with DAC and ATRA and indicates that migration and proliferation capacities correlate with and could thus serve as determinants for drug sensitivity in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Idoso , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Tretinoína/farmacologia , Tretinoína/uso terapêutico , Decitabina/farmacologia , Decitabina/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Linhagem Celular Tumoral , Proliferação de Células
5.
Sci Rep ; 13(1): 22872, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38129477

RESUMO

Intercellular adhesion is a key function for epithelial cells. The fundamental mechanisms relying on epithelial cell adhesion have been partially uncovered. Hsa-microRNA-1249-3p (hsa-miR-1249-3p) plays a role in the epithelial mesenchymal transition in carcinoma cells, but its physiological function in epithelial cells is unknown. We aimed to investigate the role and molecular mechanisms of hsa-miR-1249-3p on epithelial cell functions. Hsa-miR-1249-3p was overexpressed in human epithelial cells and uterine cervical tissues, compared to cervical carcinoma cells and precancerous tissues, respectively. Hsa-miR-1249-3p was analyzed to verify its regulatory function on Homeobox A13 (HOXA13) target gene and its downstream cell adhesion gene ß-catenin. Functional experiments indicated that hsa-miR-1249-3p inhibition prompted the mRNA and protein overexpression of HOXA13 which, in turn, led to the ß-catenin protein expression. Moreover, hsa-miR-1249-3p inhibition induced a strong colony forming ability in epithelial cells, suggesting the miR involvement in cell adhesion machinery. These data indicate that hsa-miR-1249-3p regulates the expression of HOXA13 and its downstream cell adhesion gene ß-catenin, possible resulting in cell adhesion modification in epithelial cells. This study will allow the set-up of further investigations aimed at exploring the relationship between the hsa-miR-1249-3p/HOXA13 axis and downstream cell adhesion genes.


Assuntos
Carcinoma , MicroRNAs , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Carcinoma/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Células Epiteliais/metabolismo , Regulação Neoplásica da Expressão Gênica , Genes Homeobox , MicroRNAs/genética , MicroRNAs/metabolismo
6.
J Med Virol ; 95(7): e28949, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37436928

RESUMO

Limited molecular knowledge of Merkel cell polyomavirus (MCPyV)-positive and -negative Merkel cell carcinoma (MCC) subsets (MCCP/MCCN) has prevented so far the identification of the MCC origin cell type and, therefore, the development of effective therapies. The retinoic gene signature was investigated in various MCCP, MCCN, and control fibroblast/epithelial cell lines to elucidate the heterogeneous nature of MCC. Hierarchical clustering and principal component analysis indicated that MCCP and MCCN cells were clusterizable from each other and control cells, according to their retinoic gene signature. MCCP versus MCCN differentially expressed genes (n = 43) were identified. Protein-protein interaction network indicated SOX2, ISL1, PAX6, FGF8, ASCL1, OLIG2, SHH, and GLI1 as upregulated hub genes and JAG1 and MYC as downregulated hub genes in MCCP compared to MCCN. Numerous MCCP-associated hub genes were DNA-binding/-transcription factors involved in neurological and Merkel cell development and stemness. Enrichment analyses indicated that MCCP versus MCCN differentially expressed genes predominantly encode for to DNA-binding/-transcription factors involved in development, stemness, invasiveness, and cancer. Our findings suggest the neuroendocrine origin of MCCP, by which neuronal precursor cells could undergo an MCPyV-driven transformation. These overarching results might open the way to novel retinoid-based MCC therapies.


Assuntos
Carcinoma de Célula de Merkel , Poliomavírus das Células de Merkel , Neoplasias Cutâneas , Humanos , Carcinoma de Célula de Merkel/genética , Poliomavírus das Células de Merkel/genética , Fatores de Transcrição/genética , DNA
7.
Stem Cell Res Ther ; 14(1): 139, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37226267

RESUMO

BACKGROUND: Blood transfusions represent common medical procedures, which provide essential supportive therapy. However, these procedures are notoriously expensive for healthcare services and not without risk. The potential threat of transfusion-related complications, such as the development of pathogenic infections and the occurring of alloimmunization events, alongside the donor's dependence, strongly limits the availability of transfusion units and represents significant concerns in transfusion medicine. Moreover, a further increase in the demand for donated blood and blood transfusion, combined with a reduction in blood donors, is expected as a consequence of the decrease in birth rates and increase in life expectancy in industrialized countries. MAIN BODY: An emerging and alternative strategy preferred over blood transfusion is the in vitro production of blood cells from immortalized erythroid cells. The high survival capacity alongside the stable and longest proliferation time of immortalized erythroid cells could allow the generation of a large number of cells over time, which are able to differentiate into blood cells. However, a large-scale, cost-effective production of blood cells is not yet a routine clinical procedure, as being dependent on the optimization of culture conditions of immortalized erythroid cells. CONCLUSION: In our review, we provide an overview of the most recent erythroid cell immortalization approaches, while also describing and discussing related advancements of establishing immortalized erythroid cell lines.


Assuntos
Transfusão de Sangue , Células Eritroides , Linhagem Celular , Expectativa de Vida , Humanos , Doadores de Sangue
8.
Microorganisms ; 11(4)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37110471

RESUMO

Coronavirus Disease 2019 (COVID-19) is a life-threatening disease caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus which was first reported in late 2019 in China, from where it then spread worldwide [...].

9.
Cells ; 12(1)2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36611977

RESUMO

Immune cells and commensal microbes in the human intestine constantly communicate with and react to each other in a stable environment in order to maintain healthy immune activities. Immune system-microbiota cross-talk relies on a complex network of pathways that sustain the balance between immune tolerance and immunogenicity. Probiotic bacteria can interact and stimulate intestinal immune cells and commensal microflora to modulate specific immune functions and immune homeostasis. Growing evidence shows that probiotic bacteria present important health-promoting and immunomodulatory properties. Thus, the use of probiotics might represent a promising approach for improving immune system activities. So far, few studies have been reported on the beneficial immune modulatory effect of probiotics. However, many others, which are mainly focused on their metabolic/nutritional properties, have been published. Therefore, the mechanisms behind the interaction between host immune cells and probiotics have only been partially described. The present review aims to collect and summarize the most recent scientific results and the resulting implications of how probiotic bacteria and immune cells interact to improve immune functions. Hence, a description of the currently known immunomodulatory mechanisms of probiotic bacteria in improving the host immune system is provided.


Assuntos
Microbiota , Probióticos , Humanos , Intestinos/microbiologia , Probióticos/farmacologia , Bactérias , Tolerância Imunológica
10.
Immunology ; 168(4): 671-683, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36321356

RESUMO

Oncogenic Merkel cell polyomavirus (MCPyV) provokes a widespread and asymptomatic infection in humans. Herein, sera from healthy children and young adults (HC, n = 344) aged 0-20 years old were evaluated for anti-MCPyV immunoglobulin G (IgG) and IgM antibodies employing a recently developed immunoassay. Serum MCPyV IgG data from healthy subjects (HS, n = 510) and elderlies (ES, n = 226), aged 21-65/66-100 years old, from our previous studies, were included. The anti-MCPyV IgG and IgM rates in HC sera were 40.7% and 29.7%, respectively. A lower prevalence of anti-MCPyV IgGs was found in HC aged 0-5 years old (13%) compared to 6-10 (52.3%), 11-15 (60.5%) and 16-20 years old (61.6%) cohorts. Age-stratified HCs exhibited similar anti-MCPyV IgM rates (27.9%-32.9%). Serological profiles indicated that anti-MCPyV IgGs and IgMs had low optical densities (ODs) during the first years of life, while IgM ODs appeared to decrease throughout young adulthood. A lower anti-MCPyV IgGs rate was found in HC (40.7%) than HS (61.8%) and ES (63.7%). Upon the 5-years range age-stratification, a lower anti-MCPyV IgGs rate was found in the younger HC cohort aged 0-5 years old compared to the remaining older HC/HS/ES cohorts (52.3%-72%). The younger HC cohort exhibited the lowest anti-MCPyV IgG ODs than the older cohorts. Low anti-MCPyV IgMs rates and ODs were found in the 21-25 (17.5%) and 26-30 (7.7%) years old cohorts. Our data indicate that, upon an early-in-life seroconversion, the seropositivity for oncogenic MCPyV peaks in late childhood/young adulthood and remains at high prevalence and relatively stable throughout life.


Assuntos
Poliomavírus das Células de Merkel , Infecções por Polyomavirus , Neoplasias Cutâneas , Humanos , Criança , Adulto Jovem , Adulto , Recém-Nascido , Lactente , Pré-Escolar , Adolescente , Pessoa de Meia-Idade , Idoso , Infecções por Polyomavirus/epidemiologia , Soroconversão , Soro , Imunoglobulina G
11.
J Med Virol ; 95(1): e28375, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36477874

RESUMO

Merkel cell carcinoma (MCC) is an aggressive skin malignancy with two distinct etiologies. The first, which accounts for the highest proportion, is caused by Merkel cell polyomavirus (MCPyV), a DNA tumor virus. A second, UV-induced, MCC form has also been identified. Few MCC diagnostic, prognostic, and therapeutic options are available. MicroRNAs (miRNAs) are small noncoding RNA molecules, which play a key role in regulating various physiologic cellular functions including cell cycling, proliferation, differentiation, and apoptosis. Numerous miRNAs are dysregulated in cancer, by acting as either tumor suppressors or oncomiRs. The aim of this review is to collect, summarize, and discuss recent findings on miRNAs whose dysregulation has been assumed to play a role in MCC. The potential clinical application of miRNAs as diagnostic and prognostic biomarkers in MCC is also described. In the future, miRNAs will potentially gain clinical significance for the improvement of MCC diagnostic, prognostic, and therapeutic options.


Assuntos
Carcinoma de Célula de Merkel , Poliomavírus das Células de Merkel , MicroRNAs , Infecções por Polyomavirus , Neoplasias Cutâneas , Infecções Tumorais por Vírus , Humanos , Carcinoma de Célula de Merkel/diagnóstico , Carcinoma de Célula de Merkel/genética , MicroRNAs/genética , Infecções por Polyomavirus/diagnóstico , Infecções por Polyomavirus/genética , Infecções Tumorais por Vírus/diagnóstico , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/genética , Poliomavírus das Células de Merkel/genética
13.
Front Bioeng Biotechnol ; 10: 873814, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35832412

RESUMO

Bone defects in maxillofacial regions lead to noticeable deformity and dysfunctions. Therefore, the use of biomaterials/scaffolds for maxillofacial bone regrowth has been attracting great interest from many surgical specialties and experts. Many approaches have been devised in order to create an optimal bone scaffold capable of achieving desirable degrees of bone integration and osteogenesis. Osteogenesis represents a complex physiological process involving multiple cooperating systems. A tight relationship between the immune and skeletal systems has lately been established using the concept of "osteoimmunology," since various molecules, particularly those regulating immunological and inflammatory processes, are shared. Inflammatory mediators are now being implicated in bone remodeling, according to new scientific data. In this study, a profiler PCR array was employed to evaluate the expression of cytokines and chemokines in human adipose derived-mesenchymal stem cells (hASCs) cultured on porous hydroxylapatite (HA)/Collagen derived Bio-Oss®/Avitene scaffolds, up to day 21. In hASCs grown on the Bio-Oss®/Avitene biomaterial, 12 differentially expressed genes (DEGs) were found to be up-regulated, together with 12 DEG down-regulated. Chemokine CCL2, which affects bone metabolism, tested down-regulated. Interestingly, the Bio-Oss®/Avitene induced the down-regulation of pro-inflammatory inter-leukin IL-6. In conclusion, our investigation carried out on the Bio-Oss®/Avitene scaffold indicates that it could be successfully employed in maxillofacial surgery. Indeed, this composite material has the advantage of being customized on the basis of the individual patients favoring a novel personalized medicine approach.

14.
J Oncol ; 2022: 7249912, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874636

RESUMO

Malignant pleural mesothelioma (MPM), a fatal tumor, is mainly linked to the asbestos exposure. It has been reported that together with the inhalation of asbestos fibers, other factors are involved in the MPM onset, including simian virus 40 (SV40). SV40, a polyomavirus with oncogenic potential, induces (i) in vitro the mesenchymal cell transformation, whereas (ii) in vivo the MPM onset in experimental animals. The association between MPM and SV40 in humans remains to be elucidated. Sera (n = 415) from MPM-affected patients (MPM cohort 1; n = 152) and healthy subjects (HSs, n = 263) were investigated for their immunoglobulin G (IgG) against simian virus 40 large tumor antigen (Tag), which is the transforming protein. Sera were investigated with an indirect enzyme-linked immunosorbent assay (ELISA) using two synthetic peptides from SV40 Tag protein. SV40 Tag protein was evaluated by immunohistochemical (IHC) staining on MPM samples (MPM cohort 2; n = 20). Formalin-fixed and paraffin-embedded (FFPE) samples were obtained from MPM patients unrelated to MPM serum donors. The proportion of sera, from MPM patients, showing antibodies against SV40 Tag (34%) was significantly higher compared to HSs (20%) (odds ratio 2.049, CI 95% 1.32-3.224; p=0.0026). Immunohistochemical staining (IHS) assays showed SV40 Tag expression in 8/20, 40% of MPM specimens. These results indicate that SV40 is linked to a large fraction of MPM. It is worth noting that the prevalence of SV40 Tag antibodies detected in sera from cohort 1 of MPM patients is similar to the prevalence of SV40 Tag found to be expressed in FFPE tissues from MPM cohort 2.

15.
Microorganisms ; 10(6)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35744711

RESUMO

COVID-19 emerged in late 2019 in China and quickly spread across the globe, causing over 521 million cases of infection and 6.26 million deaths to date. After 2 years, numerous advances have been made. First of all, the preventive vaccine, which has been implemented in record time, is effective in more than 95% of cases. Additionally, in the diagnostic field, there are numerous molecular and antigenic diagnostic kits that are equipped with high sensitivity and specificity. Real Time-PCR-based assays for the detection of viral RNA are currently considered the gold-standard method for SARS-CoV-2 diagnosis and can be used efficiently on pooled nasopharyngeal, or oropharyngeal samples for widespread screening. Moreover, additional, and more advanced molecular methods such as droplet-digital PCR (ddPCR), clustered regularly interspaced short palindromic repeats (CRISPR) and next-generation sequencing (NGS), are currently under development to detect the SARS-CoV-2 RNA. However, as the number of subjects infected with SARS-CoV-2 continuously increases globally, health care systems are being placed under increased stress. Thus, the clinical laboratory plays an important role, helping to select especially asymptomatic individuals who are actively carrying the live replicating virus, with fast and non-invasive molecular technologies. Recent diagnostic strategies, other than molecular methods, have been adopted to either detect viral antigens, i.e., antigen-based immunoassays, or human anti-SARS-CoV-2 antibodies, i.e., antibody-based immunoassays, in nasal or oropharyngeal swabs, as well as in blood or saliva samples. However, the role of mucosal sIgAs, which are essential in the control of viruses entering the body through mucosal surfaces, remains to be elucidated, and in particular the role of the immune response in counteracting SARS-CoV-2 infection, primarily at the site(s) of virus entry that appears to be promising.

16.
Cancers (Basel) ; 14(5)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35267424

RESUMO

The purinergic P2X7 receptor (P2X7R) is a transmembrane protein whose expression has been related to a variety of cellular processes, while its dysregulation has been linked to inflammation and cancer. P2X7R is expressed in cancer and immune system cell surfaces. ATP plays a key role in numerous metabolic processes due to its abundance in the tumour microenvironment. P2X7R plays an important role in cancer by interacting with ATP. The unusual property of P2X7R is that stimulation with low doses of ATP causes the opening of a permeable channel for sodium, potassium, and calcium ions, whereas sustained stimulation with high doses of ATP favours the formation of a non-selective pore. The latter effect induces a change in intracellular homeostasis that leads to cell death. This evidence suggests that P2X7R has both pro- and anti-tumour proprieties. P2X7R is increasingly recognised as a regulator of inflammation. In this review, we aimed to describe the most relevant characteristics of P2X7R function, activation, and its ligands, while also summarising the role of P2X7R activation in the context of inflammation and cancer. The currently used therapeutic approaches and clinical trials of P2X7R modulators are also described.

17.
Front Oncol ; 12: 832047, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35350569

RESUMO

Merkel Cell Carcinoma (MCC) is a rare but highly aggressive form of non-melanoma skin cancer whose 5-year survival rate is 63%. Merkel cell polyomavirus (MCPyV), a small DNA tumor virus, is the etiological agent of MCC. Although representing a small proportion of MCC cases, MCPyV-negative MCCs have also been identified. The role of epigenetic mechanisms, including histone post-translational modifications (PTMs) in MCC, have been only partially determined. This review aims to describe the most recent progress on PTMs and their regulative factors in the context of MCC onset/development, providing an overview of current findings on both MCC subtypes. An outline of current knowledge on the potential employment of PTMs and related factors as diagnostic and prognostic markers, as well as novel treatment strategies targeting the reversibility of PTMs for MCC therapy is provided. Recent research shows that PTMs are emerging as important epigenetic players involved in MCC onset/development, and therefore may show a potential clinical significance. Deeper and integrated knowledge of currently known PTM dysregulations is of paramount importance in order to understand the molecular basis of MCC and improve the diagnosis, prognosis, and therapeutic options for this deadly tumor.

18.
Int J Mol Sci ; 23(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35163424

RESUMO

Bone metabolism consists of a balance between bone formation and bone resorption, which is mediated by osteoblast and osteoclast activity, respectively. In order to ensure bone plasticity, the bone remodeling process needs to function properly. Mesenchymal stem cells differentiate into the osteoblast lineage by activating different signaling pathways, including transforming growth factor ß (TGF-ß)/bone morphogenic protein (BMP) and the Wingless/Int-1 (Wnt)/ß-catenin pathways. Recent data indicate that bone remodeling processes are also epigenetically regulated by DNA methylation, histone post-translational modifications, and non-coding RNA expressions, such as micro-RNAs, long non-coding RNAs, and circular RNAs. Mutations and dysfunctions in pathways regulating the osteoblast differentiation might influence the bone remodeling process, ultimately leading to a large variety of metabolic bone diseases. In this review, we aim to summarize and describe the genetics and epigenetics of the bone remodeling process. Moreover, the current findings behind the genetics of metabolic bone diseases are also reported.


Assuntos
Doenças Ósseas Metabólicas/genética , Epigênese Genética , Predisposição Genética para Doença/genética , Animais , Remodelação Óssea , Metilação de DNA , Código das Histonas , Humanos , Osteogênese , RNA não Traduzido/genética , Via de Sinalização Wnt
19.
Oncogene ; 41(3): 301-308, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34750517

RESUMO

A3 adenosine receptor (A3AR) is a cell membrane protein, which has been found to be overexpressed in a large number of cancer types. This receptor plays an important role in cancer by interacting with adenosine. Specifically, A3AR has a dual nature in different pathophysiological conditions, as it is expressed according to tissue type and stimulated by an adenosine dose-dependent manner. A3AR activation leads to tumor growth, cell proliferation and survival in some cases, while triggering cytostatic and apoptotic pathways in others. This review aims to describe the most relevant aspects of A3AR activation and its ligands whereas it summarizes A3AR activities in cancer. Progress in the field of A3AR modulators, with a potential therapeutic role in cancer treatment are reported, as well.


Assuntos
Biologia Molecular/métodos , Neoplasias/genética , Receptor A3 de Adenosina/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Transdução de Sinais
20.
Front Microbiol ; 12: 789991, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34970247

RESUMO

Merkel cell polyomavirus (MCPyV) is a small DNA tumor virus ubiquitous in humans. MCPyV establishes a clinically asymptomatic lifelong infection in healthy immunocompetent individuals. Viral infections are considered to be risk factors for spontaneous abortion (SA), which is the most common adverse complication of pregnancy. The role of MCPyV in SA remains undetermined. Herein, the impact of MCPyV infection in females affected by SA was investigated. Specifically, an indirect enzyme-linked immunosorbent assay (ELISA) method with two linear synthetic peptides/mimotopes mimicking MCPyV antigens was used to investigate immunoglobulin G (IgG) antibodies against MCPyV in sera from 94 females affected by SA [mean ± standard deviation (SD) age 35 ± (6) years] and from 96 healthy females undergoing voluntary pregnancy interruption [VI, mean (±SD) age 32 ± (7) years]. MCPyV seroprevalence and serological profiles were analyzed. The overall prevalence of serum IgG antibodies against MCPyV was 35.1% (33/94) and 37.5% (36/96) in SA and VI females, respectively (p > 0.05). Notably, serological profile analyses indicated lower optical densities (ODs) in females with SA compared to those undergoing VI (p < 0.05), thus indicating a reduced IgG antibody response in SA females. Circulating IgGs were identified in sera from SA and VI females. Our immunological findings indicate that a relatively reduced fraction of pregnant females carry serum anti-MCPyV IgG antibodies, while SA females presented a more pronounced decrease in IgG antibody response to MCPyV. Although yet to be determined, this immunological decrease might prompt an increase in MCPyV multiplication events in females experiencing abortive events. The role of MCPyV in SA, if present, remains to be determined.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...